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Abstract
A modification of the quantum kicked rotator is suggested with a time-
dependent delta-kicked interaction parameter which can be realized by a
pulsed turn-on of a Feshbach resonance. The mean kinetic energy increases
exponentially with time in contrast to a merely diffusive or linear growth for
the first few kicks for the quantum-kicked rotator with a constant interaction
parameter. A recursive relation is derived in a self-consistent random phase
approximation which describes this superdiffusive growth of the kinetic energy
and is compared with numerical simulations. Unlike in the case of the quantum
rotator with constant interaction, a Lax pair is not found. In general the delta-
kicked interaction is found to lead to strong chaotic behaviour.

PACS numbers: 03.75.Nt, 05.45.Pq, 02.30.Ik

The realization of Bose–Einstein condensation (BEC) of dilute gases has opened new
opportunities for studying dynamical systems in the presence of many-body interactions.
Previous investigations have addressed the effect of the nonlinearities due to the interactions
on the dynamical localization and on the integrability of the one-dimensional Gross–Pitaevskii
equation (GP equation) in the presence of a time-periodic delta-kicked external potential
v(q, t) [1, 2]. As is well known, the classical counterpart of the quantum-kicked rotator
without interaction displays chaotic motion, leading to diffusive growth in the kinetic energy
above a certain value of the kick strength K of the external potential [3, 4]. In the corresponding
quantum-kicked rotator after a few initial kicks, during which the mean kinetic energy increases
roughly linearly, the motion becomes quasiperiodic (barring special cases where quantum
resonances occur) with a dynamical localization of the kinetic energy [5–8]. The infinite
number of conserved quantities, leading to the integrability of the quantum-kicked rotator, are
the probabilities with which the quasi-energy states are contained in a given initial state. The
inclusion of the nonlinear GP term to the Schrödinger equation in numerical simulations was
found to give rise to chaotic behaviour and delocalization of the kinetic energy [1, 2]. However,
analytical considerations still show the existence of an infinite number of independent integrals
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of motion for the one-dimensional GP equation with an arbitrary external potential [2, 9]. At
the moment it seems difficult to reconcile this analytical result with the results of the numerical
simulations.

In this letter we suggest and investigate a modification of the quantum-kicked rotator
by introducing a time-dependent interaction g(t) of delta kicks. Furthermore, we conjecture
that the numerically observed delocalization of the quantum-kicked rotator with constant
interaction parameter g could be a consequence of employing discretizations of the nonlinear
Schrödinger equation which do not preserve the property of integrability of the GP equation
with external potential in the continuum.

The scaled GP equation with external potential v(q, t) = K cos(q)
∑n=∞

n=−∞ δ(t − n)

ih̄ψ̇ = −h̄2

2
∇2

qψ + v(q, t)ψ + g|ψ |2ψ (1)

is modified by introducing a time-dependent interaction parameter g(t)

ih̄ψ̇ = −h̄2

2
∇2

qψ + v(q, t)ψ + g(t)|ψ |2ψ. (2)

The time-dependent interaction can be achieved by a suitable time-dependent tuning to
a Feshbach resonance [10]. By a short pulsed modulation of the magnetic field used
for the tuning, it is possible to taylor a time-dependent coupling parameter of the form
g(t) = g

∑n=∞
n=−∞ δ(t − n) which we want to analyse here. Thus the BE condensate, we

consider in the following, receives additional delta kicks apart from that of the external
potential already present for the quantum-kicked rotator. In between two kicks, the BE
condensate, described by (2) follows free motion with the quantum kinetic energy, whereas in
the original quantum kicked rotator with constant g (equation (1)), the motion is determined by
the integrable nonlinear Schrödinger equation (NLS) without an external potential. Therefore,
numerical simulations become considerably more efficient and easier for equation (2) with
delta-kicked interaction than for equation (1) because the latter equation with permanent
nonlinearity needs many integration steps between two kicks [1, 2]1.

The map for the wavefunction, stroboscopically taken after each kick tn, with delta
interaction g(t) is given by

ψ
(
q, t+

n+1

) = e−i/h̄·V (q,t−n+1) eih̄/2·∇2
q ψ

(
q, t+

n

)
(3)

V
(
q, t−n+1

) = K cos(q) + g
∣∣ψ(

q, t−n+1

)∣∣2
, (4)

where the t+
n , t−n variables refer to times immediately after (+) and before (−) the occurrence

of the nth kick2

ψ
(
q, t+

n+1

) = e−i/h̄·V (q,t−n+1)ψ
(
q, t−n+1

)
. (5)

Formally, equation (2) with a general interaction parameter g(t) can be transformed into
equation (1) by substitution of the wavefunction

√
g(t)/g0ψ(q, t) = ψ̃(q, t). In terms of

the new wavefunction ψ̃(q, t), the GP equation acquires a spatially constant, but imaginary
time-dependent potential part

ih̄ ˙̃ψ = −h̄2

2
∇2

q ψ̃ + ṽ(q, t)ψ̃ + g0|ψ̃ |2ψ̃ (6)

1 We are grateful to L Santos, who suggested this idea to us in a private discussion.
2 We assume here that the two types of kicks (of the potential and of the interaction) occur at the same time, but this
is of no importance for our conclusions.
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ṽ(q, t) = v(q, t) + i
h̄

2

ġ(t)

g(t)
. (7)

However, a Lax pair for the GP equation with a complex potential ṽ(q, t) and constant
interaction g0 cannot be constructed as in [2, 9] for a real external potential v(q, t).

Using the following general ansatz with 2 × 2 matrices for the generator X (q, t) and
T (q, t) of a Lax pair

X (q, t) =
(

−ik1(q, t)
√

g0ψ̃
∗(q, t)

√
g0ψ̃(q, t) ik2(q, t)

)
(8)

T (q, t) =
(

A(q, t) B(q, t)

C(q, t) D(q, t)

)
, (9)

with yet undetermined complex functions A,B,C,D and k1, k2, the compatibility of the pair
of equations

h̄
∂w

∂q
= Xw h̄

∂w

∂t
= T w (10)

requires the following equations to be satisfied:

ih̄ ˙̃ψ = i
h̄√
g0

Cq + i(D − A)ψ̃ +
(k1 + k2)√

g0
C (11)

−ih̄ ˙̃ψ∗ = −i
h̄√
g0

Bq + i(D − A)ψ̃∗ +
(k1 + k2)√

g0
B (12)

ih̄k̇1 = −h̄Aq +
√

g0(Cψ̃∗ − Bψ̃) (13)

ih̄k̇2 = h̄Dq +
√

g0(Cψ̃∗ − Bψ̃). (14)

Comparing equations (11) and (12) to (6), (7) and its complex conjugate, the terms i(D −A)ψ̃

and i(D − A)ψ̃∗ in (11), (12) have to be identified with ṽ(q, t)ψ̃ and ṽ∗(q, t)ψ̃∗ and do not
allow for an imaginary part of ṽ(q, t). Due to the missing of a Lax pair, complete chaotic
behaviour of the GP equation with a general time-dependent interaction g(t) can be expected.
This is confirmed by our numerical simulations.

It is possible to derive an approximate recursion relation for the mean kinetic energy, just
taken after kick time t+

n〈
p2

(
t+
n

)〉 =
∫ 2π

0
dq

∣∣∂qψ
(
q, t+

n

)∣∣2
(15)

and time t+
n+1,

〈
p2

(
t+
n+1

)〉
. The derivation is mainly based on the assumption that kick-to-kick

correlations between ψ
(
q, t+

n+1

)
and ψ

(
q, t+

n

)
can be neglected. Applying the expression

V
(
q, t−n+1

)
for the external potential and interaction before the (n+1)th kick (3), (4), the

averaged kinetic energy
〈
p2

(
t+
n+1

)〉
can be related to the wavefunction of the previous kick

∂qψ
(
q, t+

n+1

) = − i

h̄
∂qV

(
q, t−n+1

)
ψ

(
q, t+

n+1

)
+ e−i/h̄·V (q,t−n+1) eih̄/2·∇2

q ∂qψ
(
q, t+

n

)
(16)

〈
p2(t+

n+1

)〉 = 1

h̄2

∫ 2π

0
dq

(
∂qV

(
q, t−n+1

))2∣∣ψ(
q, t+

n+1

)∣∣2
+

∫ 2π

0
dq

∣∣eih̄/2·∇2
q ∂qψ

(
q, t+

n

)∣∣2

− 2

h̄

∫ 2π

0
dq Im

[
∂qV

(
q, t−n+1

)
ψ∗(q, t+

n+1

)(
e−i/h̄·V (q,t−n+1) eih̄/2·∇2

q ∂qψ
(
q, t+

n

))]
.

(17)
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The last integral in (17) contains only a single wavefunction ψ∗(q, t+
n+1

)
at time tn+1 so that, due

to the assumption of independent phases between neighbouring kicks, this term approximately
vanishes. In the second term of relation (17), the spatial derivative ∂qψ

(
q, t+

n

)
is transformed

by a unitary operator which cancels in the integral so that the integrand becomes
∣∣∂qψ

(
q, t+

n

)∣∣2
,

and in consequence the second term is
〈
p2

(
t+
n

)〉
. Taking the spatial derivative ∂qV

(
q, t−n+1

)
in

the first term of
〈
p2

(
t+
n+1

)〉
(17)

∂qV
(
q, t−n+1

) = −K sin(q) + g∂qψ
∗(q, t−n+1

)
ψ

(
q, t−n+1

)
+ gψ∗(q, t−n+1

)
∂qψ

(
q, t−n+1

)
, (18)

we only keep expressions with absolute values of wavefunctions and their derivatives and
obtain

h̄2
〈
p2

(
t+
n+1

)〉 ≈ K2
∫ 2π

0
dq sin2(q)

∣∣ψ(
q, t+

n+1

)∣∣2︸ ︷︷ ︸
1/(2π)

+ 2g2
∫ 2π

0
dq

∣∣∂qψ
(
q, t−n+1

)∣∣2 ∣∣ψ(
q, t−n+1

)∣∣2︸ ︷︷ ︸
1/(2π)

∣∣ψ(
q, t+

n+1

)∣∣2︸ ︷︷ ︸
1/(2π)

+ h̄2
〈
p2

(
t+
n

)〉
, (19)

where the absolute values of ψ
(
q, t−n+1

)
and ψ

(
q, t+

n+1

)
are replaced by the mean density 1/(2π).

Since the wavefunction ψ
(
q, t−n+1

)
differs from ψ

(
q, t+

n

)
only by the time development with

exp
{
ih̄/2 · ∇2

q

}
, the average of

∣∣∂qψ
(
q, t−n+1

)∣∣2
can be replaced by

∣∣∂qψ
(
q, t+

n

)∣∣2
.

This results in a recursive relation between
〈
p2

(
t+
n+1

)〉
and

〈
p2

(
t+
n

)〉
〈
p2

(
t+
n+1

)〉 = K2

2h̄2 +

(
1 +

g2

2π2h̄2

) 〈
p2

(
t+
n

)〉
. (20)

In the case of vanishing interaction parameter g,
〈
p2

(
t+
n

)〉
increases linearly with K2/(2h̄2),

as expected for the initial classical diffusive regime of the original quantum-kicked rotator.
However, the phenomenon of quantum localization cannot be derived from the recursive
relation which assumes no kick-to-kick correlation of the phases of the wavefunctions at times
tn and tn+1 and neglects the correlations due to the presence of quasi-energy eigenstates. For
finite interaction g quasi-energy states no longer exist and the assumption leading to (20) can
be consistent. Indeed, due to equation (20), the mean kinetic energy follows an exponential
or superdiffusive growth, indicating strong chaotic behaviour, which makes the assumption
of statistical independence of subsequent kicks self-consistent. The continuum limit of the
recursion relation (20) also yields an exponential growth of 〈p2(t)〉

〈p2(t)〉 = π2K2

g2

[
exp

(
g2

2h̄2π2
t

)
− 1

]
, (21)

where 〈p2(t = 0)〉 vanishes if the initial wavefunction ψ(q, t = 0) = 1/
√

2π is taken with
zero momentum as in our simulations. Relation (21) for 〈p2(t)〉 interpolates between purely
linear increase for small g and exponential growth for strong interactions.

The comparison of the recursive relation for
〈
p2

(
t+
n

)〉
(20) and 〈p2(t)〉 (21) with

numerical simulations yields a qualitative agreement on a logarithmic scale (see figures 1–3).
In figure 3 we display on a logarithmic scale the mean kinetic energy for the delta-
kick interaction g(t) = g

∑n=∞
n=−∞ δ(t − n) with g = 5 and for the external potential

v(q, t) = K cos(q)
∑n=∞

n=−∞ δ(t − n) with kick strength K = 1. Our estimate (20) and
(21) for

〈
p2

(
t+
n

)〉
gives a consistent value for the slope whereas the absolute values of

〈
p2

(
t+
n

)〉
differ by a constant factor from the numerical results. This deviation may result from the
substitution of the average of the product of the densities with the product of the average
of the wavefunctions (cf equation (19)). The phenomenon of quantum localization as for
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0
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8 0.1
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tn log(g)

log<p2(tn)/2>

Figure 1. Logarithm of the mean kinetic energy determined from the recursive relation (20) for
vanishing initial momentum of the wavefunction ψ(q, t0) = 1/

√
2π with a kick strength of the

external potential of K = 1.0. log〈p2(tn)/2〉 is displayed for the first eight kicks tn versus the
logarithm of the parameter g of the delta-kicked interaction, ranging from g = 0.1 to g = 10.0.

106

103

100

0
2 4 6 8tn 0.1

1.0

10.

log(g)

log<p2(tn)/2>

Figure 2. Results of the numerically obtained averaged kinetic energy on a logarithmic scale
for the same parameters as in figure 1. (Configurations of the axes are the same as in figure 1.)
Qualitative agreement for the superdiffusive growth of 〈p2(tn)/2〉 is obtained with the exponential
relation (20).

100

103

106

0 4 8 12 tn –>

log<p2 (tn)/2>

Figure 3. Comparison of the exponential relation (21) (dash-dotted upper line) for g = 5.0 of
the delta-kicked interaction and the kick strength K = 1.0 with the corresponding numerical
simulations (lower solid line). The slope of the exponential increase of the kinetic energy, obtained
by (21), is in good agreement with the computations whereas absolute values differ by a constant
factor.

vanishing interaction g = 0 or small but constant g has not been obtained in our simulations
with available number of space points up to 216 on the periodic interval [0, 2π). The increase
of the mean kinetic energy only ended at the maximum momentum squared which is limited
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by the spatial intervals. The complete missing of any sign of quantum localization and the
superdiffusive increase of 〈p2(t)〉 are the main differences to the original quantum-kicked
rotator. In the case of constant interaction parameter g(t) = g (equation (1)), a slow increase
of the mean kinetic energy can be observed in numerical simulations [1, 2]. We conjecture
that this delocalization may be caused by a nonintegrable discretization. According to [9] and
our considerations, the obvious discrete version of the GP equation (1) is not integrable

(ψn(t) = ψ(qn, t))

ih̄ψ̇n = −h̄2

2

ψn+1 − 2ψn + ψn−1

(�q)2
+ vn(t)ψn + g|ψn|2ψn

(22)

and does not possess a Lax pair, whereas the following discrete Schrödinger equation with
constant interaction parameter g can be derived from a compatibility condition with appropriate
generators X and T for a Lax pair

ih̄ψ̇n = −h̄2

2

ψn+1 − 2ψn + ψn−1

(�q)2
+

1

2
(vn(t) + vn+1(t))ψn +

g

2
|ψn|2(ψn+1 + ψn−1). (23)

The mean kinetic energy derived from (23) and (22) can therefore be expected to behave quite
differently, but (23) is, unfortunately, more difficult to simulate accurately than (22), and has
not been analysed so far.

Discrete versions of differential equations need not have in general the same integrability
or chaoticity properties as their continuous counterparts [9]. However, the modification of the
quantum-kicked rotator by a delta-kicked interaction, we have studied here, is free from such
difficulties since it gives a unique map from the continuum equation (2) to the time development
(3) of the wavefunction with only free motion between two kicks. The superdiffusive growth
and strong delocalization of the mean kinetic energy should be observable experimentally by a
suitable tuning to a Feshbach resonance. A realization of a ring structure for a BE condensate,
on which short potential kicks are applied, has been suggested [2]. Qualitatively, a stronger
expansion rate of the condensate should be observed for the delta-kicked interaction because
of the exponential increase of the mean kinetic energy.
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